MOAWOA

2018-2019

- There are 4 hours available for the problems.
- Each problem in worth 10 points. Partial solutions may be awarded partial points.
- Be clear when using a theorem. When you are using an obscure theorem, cite a source.
- Use different sheets for each problem. Write your name on every sheet you hand in.
- Clearly write DRAFT on any draft page you hand in.
- You may write answers in English or Dutch.

Problem 1 Determine all real-valued polynomials $P(x)$ such that $P(2 k-1)=P(2 k)$ for all k with $0 \leq k<$ $\operatorname{deg}(P)$.

Problem 2 Show that for each $x, y, z \in \mathbb{N}_{>0}$ the following holds:

$$
x \Uparrow y \equiv x \uparrow z \quad \bmod 2^{\min (y, z)}
$$

(The notation $a \Uparrow b$ stands for $a^{a^{\cdots a^{a}}}$ with b times an a, for example: $2 \Uparrow \uparrow 4=2^{2^{2^{2}}}=65536$)
Problem 3 A triangle $A B C$ is given. Define ℓ_{1} as the median (=zwaartelijn) from B to $A C$ and ℓ_{2} as the line through A perpendicular to $A C$. De lines ℓ_{1} and ℓ_{2} intersect in D. Define E as the base of the altitude (=voetpunt van hoogtelijn) from C to ℓ_{1}. Suppose that $\angle B C A+\angle A B D=90^{\circ},|D A||A B|=|D B||B C|$ and $2|A C|=|B D|$. Show that E is the centroid (=zwaartepunt) of triangle $A B C$.

Problem 4 A positive integer is called a $M O A W O A$-number if every nonzero digit occurs at most twice (in decimal notation). For example, 2019, 112233 and 1000001 are MOAWOA-numbers but 111 and 1232123 are not. Define S as the sum of all MOAWOA-numbers less than 10^{10}. Show that S is divisible by $10^{10}-1$.

Problem 5 Determine all positive integers n such that the following holds: for every $k \in \mathbb{N}$ the statement $n \mid k^{n}-1$ implies that $n^{2} \mid k^{n}-1$.

Problem 6 (Proposed by Julian Lyczak, IST Austria) Let p be a prime. A subset $X \subset \mathbb{F}_{p}^{x}$ satisfies the following two properties:

- The sum $x+y$ of two distinct elements $x, y \in X$ lies in \mathbb{F}_{p}^{x}.
- Any element $s \in F_{p}^{x}$ can be uniquely written as the sum of two distinct elements of X.

Prove that $p=11$ and X is either the quadratic residues modulo 11 or the quadratic non-residues.

