Problem 1. - Julian Lyczak, IST Austria
Let p be a prime. A subset $X \subseteq \mathbb{F}_{p}^{\times}$satisfies the following two properties.

- The sum $x+y$ of two distinct element $x, y \in X$ lies in \mathbb{F}_{p}^{\times}.
- Any element $s \in \mathbb{F}_{p}^{\times}$can be uniquely written as the sum of two distinct elements of X.

Prove that $p=11$ and X is either the quadratic residues modulo 11, or the quadratic non-residues.

Solution by Julian Lyczak and Carlo Pagano. Let x_{1}, \ldots, x_{r} be the distinct elements of X. We begin with the following remarks.
By the conditions we see that $\left\{x_{i}+x_{j} \mid i<j\right\}$ and \mathbb{F}_{p}^{\times}are equals as multisets. The first multiset contains $\binom{r}{2}$ elements and the second $p-1$. We derive that $p-1=\frac{r(r-1)}{2}$. In particular we find that $p>3$.
If a subset $X \subseteq \mathbb{F}_{p}^{\times}$which satisfies the conditions of the problem, then it is easily checked that the subset $a X:=\{a \cdot x \mid x \in X\}$ also satisfies the conditions for any $a \in \mathbb{F}_{p}^{\times}$.

Now let $\zeta=e^{\frac{2 \pi i}{p}}$ be a primitive p-th root of unity and consider the element

$$
w_{Y}=\sum_{x \in Y} \zeta^{x}
$$

for any subset $Y \in \mathbb{F}_{p}$. We will compute the norm of the complex number w_{X} in two ways. The first method will prove that $\left|w_{X}\right| \leq 2$ and the second that $\left|w_{X}\right|^{2}=r-2$.
For the subset X in the problem we find

$$
\begin{aligned}
w_{X}^{2} & =\left(\sum_{x \in X} \zeta^{x}\right)^{2} \\
& =\sum_{x \in X} \zeta^{2 x}+\sum_{\substack{x \neq y \\
x, y \in X}}^{r} \zeta^{x+y} \\
& =\sum_{x \in X} \zeta^{2 x}+2\left(\zeta+\zeta^{2}+\ldots+\zeta^{p-1}\right) \\
& =w_{2 X}-2 .
\end{aligned}
$$

Consider the function $f \cdot \mathbb{C} \rightarrow \mathbb{C}, x \mapsto x^{2}+2$. Since $2 X$ also satisfies the conditions of the problem we find

$$
f^{p-1}\left(w_{X}\right)=w_{2^{p-1} X}=w_{X}
$$

Hence w_{X} is a periodic point of f. Now assume that a complex number z satisfies $|z|>2$. We will show that z is not a periodic point of f. This follows from

$$
|f(z)|=\left|z^{2}+2\right| \geq\left|z^{2}\right|-|2|>2|z|-2>|z| .
$$

This proves that $\left|w_{X}\right| \leq 2$.
To compute the norm of w_{X} exactly in terms of r we use the following lemma.
Lemma. Any element \mathbb{F}_{p}^{\times}can be written in precisely two ways as the difference of two elements in X.

Proof. Assume that we can write an element of $d \in \mathbb{F}_{p}^{\times}$as the difference in two distinct ways, say $d=a_{1}-b_{1}=a_{2}-b_{2}$ with $a_{i}, b_{i} \in X$ with $a_{1} \neq a_{2}$ and equivalently $b_{1} \neq b_{2}$. Since d is invertible modulo p we also see that $a_{1} \neq b_{1}$ and $a_{2} \neq b_{2}$. We will prove that either $a_{1}=b_{2}$ or $a_{2}=b_{1}$. Rewrite to $a_{1}+b_{2}=a_{2}+b_{1}$ and call this sum $s \in \mathbb{F}_{p}$. If $s \neq 0$ then we have two ways two write $s \in \mathbb{F}_{p}^{\times}$as the sum of two elements in X. This is only possible if at least one of the sums has two equal terms, due to the second condition. This proves that $a_{1}=b_{2}$ or $a_{2}=b_{1}$. Now note that both equalities can not hold since $p \neq 2$.
Let us prove that no element $d \in \mathbb{F}_{p}^{\times}$can be written as the difference of elements in X in three ways, say

$$
d=a_{1}-b_{1}=a_{2}-b_{2}=a_{3}-b_{3}
$$

Without loss of generality we find $a_{1}=b_{2}$, because if $a_{2}=b_{1}$ we can consider $-d$. If we now had $b_{2}=a_{3}$ we would have $a_{1}=a_{3}$ and hence $\left(a_{1}, b_{1}\right)=\left(a_{3}, b_{3}\right)$. So we find $a_{2}=b_{3}$ and we conclude that

$$
3 d=\left(a_{1}-b_{1}\right)+\left(a_{2}-b_{2}\right)+\left(a_{3}-b_{3}\right)=0 .
$$

Since $p \neq 3$ this contradicts the fact that $d \in \mathbb{F}_{p}^{\times}$.
We have $p-1$ elements $d \in \mathbb{F}_{p}^{\times}$and $2\binom{r}{2}$ differences $x-y$ for distinct $x, y \in X$. Since $p-1=\binom{r}{2}$ and every d can be written in at most two ways as a difference, we see that every $d \in \mathbb{F}_{p}^{\times}$can be written in exactly two ways as a difference of elements in X.

The lemma implies that

$$
\begin{aligned}
\left|w_{X}\right|^{2} & =\left(\sum_{x \in X} \zeta^{x}\right)\left(\sum_{x \in X} \zeta^{-x}\right) \\
& =\sum_{x \in X} \zeta^{x} \zeta^{-x}+\sum_{\substack{x \neq y \\
x, y \in X}}^{r} \zeta^{x-y} \\
& =r+2\left(\zeta+\zeta^{2}+\ldots+\zeta^{p-1}\right) \\
& =r-2 .
\end{aligned}
$$

We conclude that $r-2=\left|w_{X}\right|^{2} \leq 2^{2}$ and hence $r \leq 6$. We consider the remaining cases separate. If r is one of the values 1,3 , or 6 then $p=\binom{r}{2}+1$ is not a prime number. For $r=2$ we find $p=2$ which is also not possible. The remaining cases are $r=3$ and $p=7$, and $r=5$ and $p=11$. Let us make the following general remarks to prove the first case yields no solutions and the second case gives two possible subsets X.
If a subset X satisfies the conditions and contains an element a, then the subset $a^{-1} X \subseteq \mathbb{F}_{p}^{\times}$also works and contains $1 \in \mathbb{F}_{p}^{\times}$. So we can assume that X contains 1 .
We know that the difference 1 occurs twice between elements of X, let say $x, x+1, y, y+1 \in X$ with $x \neq y$. Since $x+(y+1)=(x+1)+y$ these four elements are not all distinct. Without loss of generality we have $x=y+1$ and hence X contains three consecutive elements.
Now consider an X with $r=3$ and $p=7$ which contains $1 \in \mathbb{F}_{7}^{\times}$. The conditions on X imply that $6 \notin X$ and that X contains either 2 or 5 , and it contains either 3 or 4 . Since X also contains three consecutive numbers the only possibility is $X=\{1,2,3\}$ which does work.
For $r=5$ we have $p=11$ and X contains precisely one of x and $-x$ for all $x \in \mathbb{F}_{p}^{\times}$. Again assume that X contains $1 \in \mathbb{F}_{11}^{\times}$. Consider the possibilities of three consecutive numbers in X.

- X contains $\{1,2,3\}$. Then X can not contain 8,9 and 10 . It also can not contain 4 , since $1+4=2+3$. So the remaining two elements of X come from $\{5,6,7\}$. These elements can not be consecutive, so X must be $\{1,2,3,5,7\}$, but $1+7=3+5$ so this does not satisfy the conditions of the problem.
- X contains $\{2,3,4\}$. However, X also contains 1 and $1+4=2+3$.
- X contains $\{3,4,5\}$. Now X can not contain $2,6,7,8$ and 10 . So the remaining element of X must be 9 . This gives $X=\{1,3,4,5,9\}$ which is the set of quadratic residues modulo 11 .
- X contains $\{5,6\}$. Now we have $5+6 \equiv 0 \bmod 11$.
- X contains $\{6,7,8\}$. The set X can not contain $3,4,5$ and 10 . Neither 2 nor 9 completes X to a correct set.
- X contains $\{7,8,9\}$. Now 2, 3, 4 and 10 are excluded. Again, neither 5 nor 6 works.

So X is a coset of the quadratic residues modulo 11.

