
• There are 4 hours available for the problems.

• Every problem is worth at most 10 points.
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Problem 1.
Let n be a natural number and define A to be the n × n matrix with Ai,i+1 = Ai+1,i = i + 1 and
Aii = i2 + 1 whenever 1 ≤ i < n, Ann = n2 and all other entries are zero. Calculate detA.

Solution 1. We will prove by induction that detA = n!2. This is trivial for n = 1 and n = 2,
now suppose it is true for some n ≥ 2. Then we get∣∣∣∣∣∣∣∣∣∣∣
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= (n+ 1)2n!2 = (n+ 1)!2.

Solution 2. Denote by B the matrix with diagonal entries 1, 2, . . . , n, superdiagonal entries equal to
1 and all other entries equal to 0. Then A = BBt, thus detA = (detB)(detBt) = n!2.

Problem 2.
Find all permutations σ on the set {1, 2, . . . , n} satisfying

n∑
i=1

σ(i)

i
= n.

Solution 1. We will prove by induction that any σ, not equal to the identity, satisfies

n∑
i=1

σ(i)

i
> n.



This would then imply that the only permutation that is a solution is the identity. For n = 2 this is
evident, since 2+ 1

2
> 2. Now suppose the statement is true for some n ≥ 2. Let σ be a permutation on

the set {1, 2, . . . , n+1}. If σ(n+1) = n+1 then clearly we are done, so let us suppose σ(n+1) 6= n+1.
Then we find i0, j0 ∈ {1, 2, . . . , n} such that σ(i0) = n + 1 and σ(n + 1) = j0. Now let us define a
permutation σ0 on {1, 2, . . . , n} by σ0(i) = σ(i) when i 6= i0 and σ(i0) = j0. We get

n+1∑
i=1

σ(i)

i
=
n+ 1

i0
+

j0
n+ 1

− j0
i0

+
n∑
i=1

σ0(i)

i

≥ n+ 1− j0
i0

+
j0

n+ 1
+ n >

n+ 1− j0
n+ 1

+
j0

n+ 1
+ n = n+ 1.

Solution 2. By the Arithmetic Mean-Geometric Mean Inequality we have

n∑
i=1

σ(i)

i
≥ n

n

√
σ(1)

1

σ(2)

2
· · · σ(n)

n
= n

and we have equality if and only if σ(1)
1

= σ(2)
2

= . . . = σ(2)
2

. Because σ(n)
n
≤ 1 ≤ σ(1)

1
this only happens

when σ(i)
i

= 1 for all 1 ≤ i ≤ n, i.e. σ must be the identity.

Problem 3.
Let n be a natural number. Give (explicitly) real numbers a0, a1, . . . , an, not all equal to zero, such
that for all n times continuously differentiable functions f : R→ R the following equation holds

n∑
k=0

akf(kx) = O(xn) for x small enough.

Solution. Take ak =
(
n
k

)
(−1)n−k and let g(x) =

∑
akf(kx). First we notice

n∑
k=0

km
(
n

k

)
(−1)n−k =

dm

dxm
(ex − 1)n|x=0 =

{
0 if 0 ≤ m < n
n! if m = n

This shows that g(n)(0) = n!f (n)(0) and g(0) = g′(0) = . . . = g(n−1)(0) = 0. Hence we may apply
l’Hôpitals theorem successively to obtain that

lim
x→0

g(x)

xn
=
g(n)(0)

n!
= f (n)(0),

which proves that g(x) = O(xn) for x small enough.

Remark. Denote by Tx the operator (Txf)(x0) = f(x0 + x) − f(x0). Intuitively one might suspect
that x−n(T nx f)(0) has limit f (n)(0) as x → 0, indeed this is true. One easily shows by induction that
(T nx f)(0) = g(x).



Problem 4.
For any natural number n let π(n) be the number of sets of natural numbers whose elements add
up to n and let π2(n) be the number of these sets that contain at least one power of 2. Prove that
π2(n+ 1) = π(n). Remark: in this problem 1 is considered to be a power of 2.

Solution 1. Denote by Π(n) the collection of sets of natural numbers whose elements add up to n
and let Π2(n) be the collection of sets in Π(n) that contain at least one power of 2. Consider the map
f : Π2(n + 1) → Π(n) that sends any set A ∈ Π2(n + 1) to (A \ {2k}) ∪ {2l|0 ≤ l < k}, where 2k is
the smallest power of 2 in A. One easily checks that f is a bijective function and thus π2(n+1) = π(n).

Solution 2. Let us prove this statement by induction. The statement is clearly true for n = 1. Now
suppose that π2(k + 1) = π(k) for all 1 ≤ k < n. Notice that every subset of N can be written as a
union of a subset that contains only powers of two and a subset that doesnt contain any power of two.
The amount of ways to write a natural number n + 1− k as a sum of powers of two is one. Thus we
must conclude that

π2(n+ 1) = 1 +
n∑
k=1

(π(k)− π2(k)) · 1 = 1 + π(n)− π2(1) = π(n).

Solution 3. Define π(0) = 1 for convenience. Clearly π(n) ≤ 2n and thus the series
∑
π(n)xn

converges for |x| < 1
2
. Now let |x| < 1

2
, notice that

lim
N→∞

∣∣∣∣∣
N∏
n=1

(1 + xn)−
N∑
n=0

π(n)xn

∣∣∣∣∣ ≤ lim
N→∞

∞∑
n=N+1

π(n)|x|n = 0

and since every natural number has a unique binary expansion

lim
N→∞

N−1∏
j=0

(1 + x2
j

) = lim
N→∞

2N−1∑
n=0

xn =
1

1− x
.

It follows that π2(n+ 1) = π(n), because for all |x| < 1
2

1 +
∞∑
n=1

(π(n)− π2(n))xn = (1− x)
∞∏
n=1

(1 + xn) = (1− x)
∞∑
n=0

π(n)xn

= 1 +
∞∑
n=1

(π(n)− π(n− 1))xn.

Exercise 5.
Find all natural numbers n such that for every positive divisor d of n we have n | d2 or d2 | n+ k for
some positive divisor k of n.



Solution. Let p be prime. For any two powers e and e′ of p we have that e′ | e or e | e′. So if n is
a prime power then n | d2 or d2 | n. The latter implies d2 | n + n. So all prime powers, including 1,
satisfy the condition.
Now suppose n has more than one prime divisor. Let p and q be different primes dividing n and let l
and m be the unique natural numbers satisfying pl | n, pl+1 - n, qm | n and qm+1 - n. Now look at the
divisor d = n

pl
of n. Clearly n - d2 so there must exist a positive divisor k of n such that d2 | n+ k. By

d | n we find that d | k and k | n so k = n
ps

for some non-negative integer s ≤ l. This yields q2m | n+ n
ps

and hence qm | ps + 1. Similarly we find a non-negative t ≤ m such that pl | qt + 1. This gives the
estimation pl ≤ qt + 1 ≤ qm + 1 ≤ ps + 2. So p = 2, p = 3 or l = s. If p = 2 and s < l we have
(l, s) = (2, 1) or (1, 0). So we find respectively qm | 3 and qm | 2. The second gives a contradiction
with p 6= q, the first one gives q = 3 and m = 1. If p = 3 and s < l we must have l = 1 and s = 0. By
the same constraints on q we find for t < m the same cases, so the possible solutions are 6 and 12.
Now we can assume l = s and m = t. Writing A = pl and B = qm gives B | A + 1 and A | B + 1.
The case A = B is clearly impossible so assume without loss of generality that A < B. Then we get
A ≤ B+1

2
≤ A+2

2
= A

2
+ 1 so A ≤ 2. Clearly A 6= 1 so A = 2 and we find B = 3.

Note that we have proven that for any two distinct prime divisors of n one equals 2 and the other
equals 3. Hence n has at most two prime divisors and the discussion above shows that 6 and 12 are
the only possible solutions with more than one prime divisor. A quick check shows they indeed satisfy
the conditions of the exercise.
So all such numbers are 6, 12 and all prime powers, including 1.

Exercise 6.
Let H and K be subgroups of a finite group G. Suppose that gH ∩Kg consists of one element for all
g ∈ G. Prove that |H| · |K| divides |G|.

Solution 1. We will imitate the proof of Lagrange’s theorem and define an equivalence relation on G
such that the size of each equivalence classes is equal to |H| · |K|.
Define g ∼ g′ if and only if there exists h ∈ H and k ∈ K such that kgh = g′. We have g ∼ g since
eG ∈ H ∩ K and if g ∼ g′ then from kgh = g′ we get k−1g′h−1 = g so g′ ∼ g. Now if g ∼ g′ and
g′ ∼ g′′ we can find h, h′ ∈ H and k, k′ ∈ K such that kgh = g′ and k′g′h′ = g′′. Hence we have
(k′k)g(hh′) = g′′. So ∼ defines a equivalence relation on G and the equivalence class of g clearly equals
KgH. The map H ×K → HgK, (h, k) 7→ kgh is clearly onto. It is one-to-one since from kgh = k′gh′

we get (k′−1k)g = g(h′h−1). By the assumption we now get k′−1k = eG = h′h−1 so (h, k) = (h′, k′).
So the size of each equivalence class is |H|·|K| = |H×K| and the result follows as they partition out G.

Solution 2. Let (h, k) ∈ H ×K act on G by sending g ∈ G to kgh−1. By the orbit counting formula
we have that the number of orbits equals

1

|H ×K|
∑

(h,k)∈H×K

|Fix(h, k)|

where Fix(h, k) = {g ∈ G | kgh−1 = g}. If Fix(h, k) is not empty we use the assumption to conclude
as in solution 1 that h = k = eG. Hence

∑
(h,k)∈H×K |Fix(h, k)| = |Fix(eG, eG)| = |G|.


