- There are 4 hours available for the problems.
- Every problem is worth at most 10 points.


## MOAWOA Solutions <br> June 242011

## Problem 1.

Let $n$ be a natural number and define $A$ to be the $n \times n$ matrix with $A_{i, i+1}=A_{i+1, i}=i+1$ and $A_{i i}=i^{2}+1$ whenever $1 \leq i<n, A_{n n}=n^{2}$ and all other entries are zero. Calculate $\operatorname{det} A$.

Solution 1. We will prove by induction that $\operatorname{det} A=n!^{2}$. This is trivial for $n=1$ and $n=2$, now suppose it is true for some $n \geq 2$. Then we get

$$
\begin{aligned}
& \left|\begin{array}{ccccc}
2 & 2 & \ldots & 0 & 0 \\
2 & 5 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & n^{2}+1 & n+1 \\
0 & 0 & \ldots & n+1 & (n+1)^{2}
\end{array}\right|=\left|\begin{array}{ccccc}
2 & 2 & \ldots & \ldots & 0 \\
2 & 5 & \ldots & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \ldots & \ldots & n^{2} & \\
0 & \ldots & \ldots & n+1 & (n+1)^{2}
\end{array}\right| \\
& =(n+1)^{2}\left|\begin{array}{ccccc}
2 & 2 & \ldots & \ldots & \ldots \\
2 & 5 & \ldots & \ldots & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & \ldots & n & n^{2}
\end{array}\right|-(n+1)\left|\begin{array}{ccccc}
2 & 2 & \ldots & \ldots & 0 \\
2 & 5 & \ldots & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & \ldots & n & 0
\end{array}\right| \\
& =(n+1)^{2} n!^{2}=(n+1)!^{2} .
\end{aligned}
$$

Solution 2. Denote by $B$ the matrix with diagonal entries $1,2, \ldots, n$, superdiagonal entries equal to 1 and all other entries equal to 0 . Then $A=B B^{t}$, thus $\operatorname{det} A=(\operatorname{det} B)\left(\operatorname{det} B^{t}\right)=n!^{2}$.

## Problem 2.

Find all permutations $\sigma$ on the set $\{1,2, \ldots, n\}$ satisfying

$$
\sum_{i=1}^{n} \frac{\sigma(i)}{i}=n
$$

Solution 1. We will prove by induction that any $\sigma$, not equal to the identity, satisfies

$$
\sum_{i=1}^{n} \frac{\sigma(i)}{i}>n
$$

This would then imply that the only permutation that is a solution is the identity. For $n=2$ this is evident, since $2+\frac{1}{2}>2$. Now suppose the statement is true for some $n \geq 2$. Let $\sigma$ be a permutation on the set $\{1,2, \ldots, n+1\}$. If $\sigma(n+1)=n+1$ then clearly we are done, so let us suppose $\sigma(n+1) \neq n+1$. Then we find $i_{0}, j_{0} \in\{1,2, \ldots, n\}$ such that $\sigma\left(i_{0}\right)=n+1$ and $\sigma(n+1)=j_{0}$. Now let us define a permutation $\sigma_{0}$ on $\{1,2, \ldots, n\}$ by $\sigma_{0}(i)=\sigma(i)$ when $i \neq i_{0}$ and $\sigma\left(i_{0}\right)=j_{0}$. We get

$$
\begin{aligned}
\sum_{i=1}^{n+1} \frac{\sigma(i)}{i} & =\frac{n+1}{i_{0}}+\frac{j_{0}}{n+1}-\frac{j_{0}}{i_{0}}+\sum_{i=1}^{n} \frac{\sigma_{0}(i)}{i} \\
& \geq \frac{n+1-j_{0}}{i_{0}}+\frac{j_{0}}{n+1}+n>\frac{n+1-j_{0}}{n+1}+\frac{j_{0}}{n+1}+n=n+1
\end{aligned}
$$

Solution 2. By the Arithmetic Mean-Geometric Mean Inequality we have

$$
\sum_{i=1}^{n} \frac{\sigma(i)}{i} \geq n \sqrt[n]{\frac{\sigma(1)}{1} \frac{\sigma(2)}{2} \cdots \frac{\sigma(n)}{n}}=n
$$

and we have equality if and only if $\frac{\sigma(1)}{1}=\frac{\sigma(2)}{2}=\ldots=\frac{\sigma(2)}{2}$. Because $\frac{\sigma(n)}{n} \leq 1 \leq \frac{\sigma(1)}{1}$ this only happens when $\frac{\sigma(i)}{i}=1$ for all $1 \leq i \leq n$, i.e. $\sigma$ must be the identity.

## Problem 3.

Let $n$ be a natural number. Give (explicitly) real numbers $a_{0}, a_{1}, \ldots, a_{n}$, not all equal to zero, such that for all $n$ times continuously differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ the following equation holds

$$
\sum_{k=0}^{n} a_{k} f(k x)=\mathcal{O}\left(x^{n}\right) \text { for } x \text { small enough. }
$$

Solution. Take $a_{k}=\binom{n}{k}(-1)^{n-k}$ and let $g(x)=\sum a_{k} f(k x)$. First we notice

$$
\sum_{k=0}^{n} k^{m}\binom{n}{k}(-1)^{n-k}=\left.\frac{d^{m}}{d x^{m}}\left(e^{x}-1\right)^{n}\right|_{x=0}= \begin{cases}0 & \text { if } 0 \leq m<n \\ n! & \text { if } m=n\end{cases}
$$

This shows that $g^{(n)}(0)=n!f^{(n)}(0)$ and $g(0)=g^{\prime}(0)=\ldots=g^{(n-1)}(0)=0$. Hence we may apply l'Hôpitals theorem successively to obtain that

$$
\lim _{x \rightarrow 0} \frac{g(x)}{x^{n}}=\frac{g^{(n)}(0)}{n!}=f^{(n)}(0)
$$

which proves that $g(x)=\mathcal{O}\left(x^{n}\right)$ for $x$ small enough.
Remark. Denote by $T_{x}$ the operator $\left(T_{x} f\right)\left(x_{0}\right)=f\left(x_{0}+x\right)-f\left(x_{0}\right)$. Intuitively one might suspect that $x^{-n}\left(T_{x}^{n} f\right)(0)$ has limit $f^{(n)}(0)$ as $x \rightarrow 0$, indeed this is true. One easily shows by induction that $\left(T_{x}^{n} f\right)(0)=g(x)$.

## Problem 4.

For any natural number $n$ let $\pi(n)$ be the number of sets of natural numbers whose elements add up to $n$ and let $\pi_{2}(n)$ be the number of these sets that contain at least one power of 2 . Prove that $\pi_{2}(n+1)=\pi(n)$. Remark: in this problem 1 is considered to be a power of 2 .

Solution 1. Denote by $\Pi(n)$ the collection of sets of natural numbers whose elements add up to $n$ and let $\Pi_{2}(n)$ be the collection of sets in $\Pi(n)$ that contain at least one power of 2 . Consider the map $f: \Pi_{2}(n+1) \rightarrow \Pi(n)$ that sends any set $A \in \Pi_{2}(n+1)$ to $\left(A \backslash\left\{2^{k}\right\}\right) \cup\left\{2^{l} \mid 0 \leq l<k\right\}$, where $2^{k}$ is the smallest power of 2 in $A$. One easily checks that $f$ is a bijective function and thus $\pi_{2}(n+1)=\pi(n)$.

Solution 2. Let us prove this statement by induction. The statement is clearly true for $n=1$. Now suppose that $\pi_{2}(k+1)=\pi(k)$ for all $1 \leq k<n$. Notice that every subset of $\mathbb{N}$ can be written as a union of a subset that contains only powers of two and a subset that doesnt contain any power of two. The amount of ways to write a natural number $n+1-k$ as a sum of powers of two is one. Thus we must conclude that

$$
\pi_{2}(n+1)=1+\sum_{k=1}^{n}\left(\pi(k)-\pi_{2}(k)\right) \cdot 1=1+\pi(n)-\pi_{2}(1)=\pi(n)
$$

Solution 3. Define $\pi(0)=1$ for convenience. Clearly $\pi(n) \leq 2^{n}$ and thus the series $\sum \pi(n) x^{n}$ converges for $|x|<\frac{1}{2}$. Now let $|x|<\frac{1}{2}$, notice that

$$
\lim _{N \rightarrow \infty}\left|\prod_{n=1}^{N}\left(1+x^{n}\right)-\sum_{n=0}^{N} \pi(n) x^{n}\right| \leq \lim _{N \rightarrow \infty} \sum_{n=N+1}^{\infty} \pi(n)|x|^{n}=0
$$

and since every natural number has a unique binary expansion

$$
\lim _{N \rightarrow \infty} \prod_{j=0}^{N-1}\left(1+x^{2^{j}}\right)=\lim _{N \rightarrow \infty} \sum_{n=0}^{2^{N}-1} x^{n}=\frac{1}{1-x}
$$

It follows that $\pi_{2}(n+1)=\pi(n)$, because for all $|x|<\frac{1}{2}$

$$
\begin{aligned}
1+\sum_{n=1}^{\infty}\left(\pi(n)-\pi_{2}(n)\right) x^{n} & =(1-x) \prod_{n=1}^{\infty}\left(1+x^{n}\right)=(1-x) \sum_{n=0}^{\infty} \pi(n) x^{n} \\
& =1+\sum_{n=1}^{\infty}(\pi(n)-\pi(n-1)) x^{n}
\end{aligned}
$$

## Exercise 5.

Find all natural numbers $n$ such that for every positive divisor $d$ of $n$ we have $n \mid d^{2}$ or $d^{2} \mid n+k$ for some positive divisor $k$ of $n$.

Solution. Let $p$ be prime. For any two powers $e$ and $e^{\prime}$ of $p$ we have that $e^{\prime} \mid e$ or $e \mid e^{\prime}$. So if $n$ is a prime power then $n \mid d^{2}$ or $d^{2} \mid n$. The latter implies $d^{2} \mid n+n$. So all prime powers, including 1, satisfy the condition.
Now suppose $n$ has more than one prime divisor. Let $p$ and $q$ be different primes dividing $n$ and let $l$ and $m$ be the unique natural numbers satisfying $p^{l}\left|n, p^{l+1} \nmid n, q^{m}\right| n$ and $q^{m+1} \nmid n$. Now look at the divisor $d=\frac{n}{p^{k}}$ of $n$. Clearly $n \nmid d^{2}$ so there must exist a positive divisor $k$ of $n$ such that $d^{2} \mid n+k$. By $d \mid n$ we find that $d \mid k$ and $k \mid n$ so $k=\frac{n}{p^{s}}$ for some non-negative integer $s \leq l$. This yields $q^{2 m} \left\lvert\, n+\frac{n}{p^{s}}\right.$ and hence $q^{m} \mid p^{s}+1$. Similarly we find a non-negative $t \leq m$ such that $p^{l} \mid q^{t}+1$. This gives the estimation $p^{l} \leq q^{t}+1 \leq q^{m}+1 \leq p^{s}+2$. So $p=2, p=3$ or $l=s$. If $p=2$ and $s<l$ we have $(l, s)=(2,1)$ or $(1,0)$. So we find respectively $q^{m} \mid 3$ and $q^{m} \mid 2$. The second gives a contradiction with $p \neq q$, the first one gives $q=3$ and $m=1$. If $p=3$ and $s<l$ we must have $l=1$ and $s=0$. By the same constraints on $q$ we find for $t<m$ the same cases, so the possible solutions are 6 and 12 .
Now we can assume $l=s$ and $m=t$. Writing $A=p^{l}$ and $B=q^{m}$ gives $B \mid A+1$ and $A \mid B+1$. The case $A=B$ is clearly impossible so assume without loss of generality that $A<B$. Then we get $A \leq \frac{B+1}{2} \leq \frac{A+2}{2}=\frac{A}{2}+1$ so $A \leq 2$. Clearly $A \neq 1$ so $A=2$ and we find $B=3$.
Note that we have proven that for any two distinct prime divisors of $n$ one equals 2 and the other equals 3. Hence $n$ has at most two prime divisors and the discussion above shows that 6 and 12 are the only possible solutions with more than one prime divisor. A quick check shows they indeed satisfy the conditions of the exercise.
So all such numbers are 6, 12 and all prime powers, including 1 .

## Exercise 6.

Let $H$ and $K$ be subgroups of a finite group $G$. Suppose that $g H \cap K g$ consists of one element for all $g \in G$. Prove that $|H| \cdot|K|$ divides $|G|$.

Solution 1. We will imitate the proof of Lagrange's theorem and define an equivalence relation on $G$ such that the size of each equivalence classes is equal to $|H| \cdot|K|$.
Define $g \sim g^{\prime}$ if and only if there exists $h \in H$ and $k \in K$ such that $k g h=g^{\prime}$. We have $g \sim g$ since $e_{G} \in H \cap K$ and if $g \sim g^{\prime}$ then from $k g h=g^{\prime}$ we get $k^{-1} g^{\prime} h^{-1}=g$ so $g^{\prime} \sim g$. Now if $g \sim g^{\prime}$ and $g^{\prime} \sim g^{\prime \prime}$ we can find $h, h^{\prime} \in H$ and $k, k^{\prime} \in K$ such that $k g h=g^{\prime}$ and $k^{\prime} g^{\prime} h^{\prime}=g^{\prime \prime}$. Hence we have $\left(k^{\prime} k\right) g\left(h h^{\prime}\right)=g^{\prime \prime}$. So $\sim$ defines a equivalence relation on $G$ and the equivalence class of $g$ clearly equals $K g H$. The map $H \times K \rightarrow H g K,(h, k) \mapsto k g h$ is clearly onto. It is one-to-one since from $k g h=k^{\prime} g h^{\prime}$ we get $\left(k^{\prime-1} k\right) g=g\left(h^{\prime} h^{-1}\right)$. By the assumption we now get $k^{\prime-1} k=e_{G}=h^{\prime} h^{-1}$ so $(h, k)=\left(h^{\prime}, k^{\prime}\right)$. So the size of each equivalence class is $|H| \cdot|K|=|H \times K|$ and the result follows as they partition out $G$.

Solution 2. Let $(h, k) \in H \times K$ act on $G$ by sending $g \in G$ to $k g h^{-1}$. By the orbit counting formula we have that the number of orbits equals

$$
\frac{1}{|H \times K|} \sum_{(h, k) \in H \times K}|\operatorname{Fix}(h, k)|
$$

where $\operatorname{Fix}(h, k)=\left\{g \in G \mid k g h^{-1}=g\right\}$. If $\operatorname{Fix}(h, k)$ is not empty we use the assumption to conclude as in solution 1 that $h=k=e_{G}$. Hence $\sum_{(h, k) \in H \times K}|\operatorname{Fix}(h, k)|=\left|\operatorname{Fix}\left(e_{G}, e_{G}\right)\right|=|G|$.

