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Problem 1.
Let n be a natural number and define A to be the n x n matrix with A4;,11 = A;41; = ¢+ 1 and
A;; =% + 1 whenever 1 <14 < n, A, = n? and all other entries are zero. Calculate det A.

Solution 1. We will prove by induction that det A = n!?. This is trivial for n = 1 and n = 2,
now suppose it is true for some n > 2. Then we get

2 2 ... 0 0 2 2 ... .. 0
2 5 ... 0 0 2 5 ... ... 0
00 ... n°4+1 n+1 0 ... ... n? 0
00 ... ntl (n+1)? 0 ... ... n+1 (n+1)?
2 2 2 2 0
(2 5 o 2 5 0
=(n+1) Do : : o (n+1) :
0 n  n? 0 n 0
=(n+1)°n* = (n+ 1)
Solution 2. Denote by B the matrix with diagonal entries 1,2, ..., n, superdiagonal entries equal to

1 and all other entries equal to 0. Then A = BB, thus det A = (det B)(det B') = n!*.

Problem 2.
Find all permutations o on the set {1,2,... n} satisfying

Solution 1. We will prove by induction that any o, not equal to the identity, satisfies



This would then imply that the only permutation that is a solution is the identity. For n = 2 this is
evident, since 2+% > 2. Now suppose the statement is true for some n > 2. Let o be a permutation on
theset {1,2,...,n+1}. If o(n+1) = n+1 then clearly we are done, so let us suppose o(n+1) # n+1.
Then we find g, jo € {1,2,...,n} such that o(ip) = n+ 1 and o(n + 1) = jo. Now let us define a
permutation og on {1,2,...,n} by 0¢(i) = o(z) when i # iy and o(iy) = jo. We get
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Solution 2. By the Arithmetic Mean-Geometric Mean Inequality we have

"L o(i Jo(l)o(2 on
Z%”Wﬁ @) o) _

; 2 n
=1
and we have equality if and only if @ = @ =...= @ Because @ <1< "Tl) this only happens
when # =1forall 1 <i <mn,ie. o must be the identity.
Problem 3.
Let n be a natural number. Give (explicitly) real numbers ag, ay, ..., a,, not all equal to zero, such

that for all n times continuously differentiable functions f : R — R the following equation holds

n

Z aif(kx) = O(z") for x small enough.
k=0

Solution. Take a; = (7)(—1)""* and let g(z) = > axf(kz). First we notice

—~ (1 wek_ AT 0 f0<m<
S (D)t = e -y = ) oS
k=0

dxm n! ifm=n

This shows that ¢ (0) = n!f™(0) and g(0) = ¢'(0) = ... = g™ Y(0) = 0. Hence we may apply
I’Hopitals theorem successively to obtain that

(n)
L g@) _ g™(o)
z—0 " n!

= /™0,

which proves that g(z) = O(z") for x small enough.

Remark. Denote by T, the operator (7,f)(x¢) = f(zo + z) — f(zo). Intuitively one might suspect
that 27"(7f)(0) has limit f™(0) as z — 0, indeed this is true. One easily shows by induction that

(T3 )(0) = g().



Problem 4.

For any natural number n let 7(n) be the number of sets of natural numbers whose elements add
up to n and let mo(n) be the number of these sets that contain at least one power of 2. Prove that
mo(n + 1) = n(n). Remark: in this problem 1 is considered to be a power of 2.

Solution 1. Denote by II(n) the collection of sets of natural numbers whose elements add up to n
and let II5(n) be the collection of sets in II(n) that contain at least one power of 2. Consider the map
f:My(n+ 1) — II(n) that sends any set A € Ily(n + 1) to (A \ {2F}) U {2']0 < I < k}, where 2F is
the smallest power of 2 in A. One easily checks that f is a bijective function and thus my(n+1) = 7 (n).

Solution 2. Let us prove this statement by induction. The statement is clearly true for n = 1. Now
suppose that mo(k 4+ 1) = w(k) for all 1 < k < n. Notice that every subset of N can be written as a
union of a subset that contains only powers of two and a subset that doesnt contain any power of two.
The amount of ways to write a natural number n + 1 — k as a sum of powers of two is one. Thus we
must conclude that

mo(n + 1) —1—1—2 ) —ma(k)) - 1=1+m(n) — m(l) = m(n).

Solution 3. Define 7(0) = 1 for convenience. Clearly 7(n) < 2" and thus the series ) 7(n)z"
converges for |z| < 1. Now let |z| < 3, notice that

N N oo
lim H(l +z") — Zw(n)x" < lim Z m(n)|z|" =0
N=oo n=1 n=0 N=eo n=N+1

and since every natural number has a unique binary expansion

N-1

i Tl 02— i 3

It follows that 7ma(n + 1) = m(n), because for all |z| < 3

Exercise 5.
Find all natural numbers n such that for every positive divisor d of n we have n | d* or d* | n + k for
some positive divisor k of n.



Solution. Let p be prime. For any two powers e and ¢’ of p we have that ¢’ | e or e | ¢/. So if n is
a prime power then n | d* or d? | n. The latter implies d* | n + n. So all prime powers, including 1,
satisfy the condition.

Now suppose n has more than one prime divisor. Let p and ¢ be different primes dividing n and let [
and m be the unique natural numbers satisfying p' | n, p!*' {n, ¢™ | n and ¢™*! { n. Now look at the
divisor d = z% of n. Clearly n { d* so there must exist a positive divisor k of n such that d* | n+ k. By
d | n we find that d | k and k | n so k = ¢ for some non-negative integer s < [. This yields @™ | n+ o

and hence ¢™ | p* + 1. Similarly we find a non-negative ¢ < m such that p' | ¢* + 1. This gives the
estimation p! < ¢t +1 < ¢"+1<p°+2. Sop=2,p=3orl=s Ifp=2ands <[ we have
(I,s) = (2,1) or (1,0). So we find respectively ¢" | 3 and ¢™ | 2. The second gives a contradiction
with p # g, the first one gives g =3 and m = 1. If p =3 and s <[ we must have [ = 1 and s = 0. By
the same constraints on ¢ we find for ¢ < m the same cases, so the possible solutions are 6 and 12.

Now we can assume [ = s and m = t. Writing A = p' and B = ¢™ gives B| A+ 1and A| B+ 1.
The case A = B is clearly impossible so assume without loss of generality that A < B. Then we get

Ag%g%ngrlsoAgz Clearly A # 1 so A =2 and we find B = 3.
Note that we have proven that for any two distinct prime divisors of n one equals 2 and the other
equals 3. Hence n has at most two prime divisors and the discussion above shows that 6 and 12 are
the only possible solutions with more than one prime divisor. A quick check shows they indeed satisfy
the conditions of the exercise.

So all such numbers are 6, 12 and all prime powers, including 1.

Exercise 6.
Let H and K be subgroups of a finite group GG. Suppose that gH N K g consists of one element for all
g € G. Prove that |H| - | K| divides |G|.

Solution 1. We will imitate the proof of Lagrange’s theorem and define an equivalence relation on G
such that the size of each equivalence classes is equal to |H| - |K]|.

Define g ~ ¢’ if and only if there exists h € H and k € K such that kgh = ¢’. We have g ~ ¢ since
e € HN K and if g ~ ¢ then from kgh = ¢ we get k~'¢h™! = g so ¢ ~ g. Now if g ~ ¢’ and
g ~ ¢" we can find h,h' € H and k,k’ € K such that kgh = ¢ and k'g’h/ = ¢”. Hence we have
(K'k)g(hh') = ¢". So ~ defines a equivalence relation on G and the equivalence class of g clearly equals
KgH. The map H x K — HgK, (h,k) — kgh is clearly onto. It is one-to-one since from kgh = k’gh’
we get (K'"1k)g = g(Wh™'). By the assumption we now get &'k = eq = W'h™! so (h,k) = (W', K').
So the size of each equivalence class is |H|-| K| = |H x K| and the result follows as they partition out G.

Solution 2. Let (h,k) € H x K act on G by sending g € G to kgh™!. By the orbit counting formula
we have that the number of orbits equals

1 .
> K| > [Fix(h, k)|
(h,k)eHxK

where Fix(h, k) = {g € G | kgh™' = g}. If Fix(h, k) is not empty we use the assumption to conclude
as in solution 1 that h = k = eq. Hence }_, 1o i [Fix(h, k)| = [Fix(eq, eq)| = |G].



