Welcome

to the workshop

LaTeX Basics: How to use LaTeX for group projects

GSNS Intro LATEX-course The basics of LTTEX

TEXniCie

A-Eskwadraat
February 9, 2021

Table of contents

1 Introduction to $\operatorname{LA}_{\mathrm{E}} \mathrm{X}$

2 Building blocks of $\operatorname{AT}_{\mathrm{E}} \mathrm{X}$

3 Mathematical notation

4 Advanced constructions

Basics

- The author writes a manuscript for his book;

■ The graphic designer creates the lay-out (columnwidth, font, spacings of headers etc.);

- The typesetter sets the manuscript according to the instructions.

In $A T_{E} X$:

- ATEX is the graphic designer and the typesetter.
- You are only the author!
- You direct $A T_{E X}$ using commands in the editor.

github.com/scheinerman/SampleMathPaper

A Sample Mathematics Paper
 Edward R. Scheinerman*
 Department of Applied Mathematics and Statistics

The Johns Hopkins University
Baltimore, Maryland 21218 USA
May 13, 2005

Abstract
This is a sample $\mathrm{IATEX}_{\mathrm{E}} \mathrm{X}$ paper; its purpose is to show the basics of setting up a paper and important features of $E T_{\mathrm{E}} X$. It can also be used for assignments or other short notes.

1 Introduction

This is a simple $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ document designed to illustrate the basics of typesetting a paper. The ideas shown here can be adapted for a more informal document, such as a homework assignment.

This document is created from various source files, the most important of which is named paper.tex. By reading paper.tex along side the typeset output, the diligent reader should be able to deduce how various parts of $\mathrm{ET}_{\mathrm{I}} \mathrm{X}$ work. Indeed, you cannot understand everything that we did in this paper without looking at the source file. For example, how did we type LATEX?

Remember that $A^{A T E X}$ is a markup language and not a what-you-see-is-what-you-get word processor.

Example

1 Mizera - Status of Intersection Theory and Feynman

 IntegralsA short overview referring to multiple different papers and giving a general idea of "intersection theory'.

1 We want to calculate an S-matrix, $S=1+i T ; T$ gives matrix between incoming and outgoing momenta.

- Consider two-to-two scattering:

$$
T_{12 \rightarrow 34}=\delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \mathcal{T}_{12 \rightarrow 34}\left(s, t, p_{i}^{2}, m^{2}, \ldots\right)
$$

where $s=\left(p_{1}+p_{2}\right)^{2}, t=\left(p_{1}-p_{3}\right)^{2}$ are Mandelstam variables.

- What are the (analytical) properties of $\mathcal{T}_{12 \rightarrow 34}$ as function of the (generally complex) variables $s, t, p_{i}^{2}, m, \ldots$? (The space spanned by these variables is the Kinematic space.)
- We want to calculate loops γ in said Kinematic space, to learn about branch cuts etc.
- Need simplifications: only perturbation theory, $4-2 \varepsilon$ dimensional regularisation, scalar Feynman diagrams (generic Feynman can be reduced to sum of scalar Feynman).
- Example: 4-point 1-loop diagrams with no masses:

$$
I_{n_{1} n_{2} n_{3} n_{4}}(s, t)=\int_{\Gamma} \frac{d^{4-2 \varepsilon} \ell}{\left[\ell^{2}\right]^{n_{1}}\left[\left(\ell+p_{1}\right)^{2}\right]^{n_{2}}\left[\left(\ell+p_{1}+p_{2}\right)^{2}\right]^{n_{3}}\left[\left(\ell+p_{4}\right)^{2}\right]^{n_{4}}}
$$

where Γ is an integration contour with the right causality conditions and n_{i} are integers to distinguish box, triangle and bubble diagrams by which propagators appear.

- There is a topological invariant integer χ, such that for χ different Feynman integrals (e.g. $\left.\chi=3, I_{1111}, I_{1110}, I_{1010}\right)$ and for $\left(s_{*}, t_{*}\right)$ fixed, we can find a $\chi \times \chi$-matrix φ such that for any path γ from $\left(s_{*}, t_{*}\right)$ to (s, t) we have

$$
\left(I_{1111}, I_{1110}, I_{1010}\right)^{\top}(s, t)=\mathcal{P} e^{\int_{\gamma} \varphi}\left(I_{1111}, I_{1110}, I_{1010}\right)^{\top}\left(s_{*}, t_{*}\right)=: \mathcal{P} e^{\int_{\gamma} \varphi}|\Phi\rangle
$$

When would you use ATEX?

Advantages

- Professional layout.
- Easy mathematical formula editing.
- Simple commands for complex structures like footnotes, references, table of contents and bibliographies.
- $\mathrm{A} \mathrm{T}_{E} \mathrm{X}$ forces authors to write well structured documents.
- $\operatorname{AT} T_{E X}$ is free.

When would you use ATEX?

Disadvantages

■ Not really suited for graphic design.

- It is not WYSIWYG (what you see is what you get), like e.g. Word.
- Less intuitive than Word.

Everything is possible in $A T_{E X}$; the bigger the deviation from normal, the harder it is.

Processing

It is not WYSIWYG software, so:

- You write (flat) text with commands for layout in a ${ }^{A} T_{E} X$ editor.
- ${ }^{4} T_{E X}$ places the text and produces a PDF as output.

Example

 ATEX code
Example

\documentclass[a5paper]\{article\}

\title\{ \backslash LaTeX cursus A-Eskwadraat $\}$

\backslash author $\{\backslash$ TeX nicie $\}$
\date\{November 14, 2016\}
\backslash begin\{document \}
\backslash maketitle

\section\{Important title\}

Lorem ipsum ...
\end\{document } \}

Example

 ATEX code
Example

PDF output

\documentclass[a5paper]\{article\}

\title\{ \backslash LaTeX cursus A-Eskwadraat $\}$

\backslash author $\{\backslash$ TeX nicie $\}$
\date\{November 14, 2016\}
\backslash begin\{document \}
\backslash maketitle

\section\{Important title\}

Lorem ipsum ...
\end\{document \} }

Structure of a 4 LTEX-file

A ATEX-file always has the following structure:

```
ATEX
\documentclass{article}
\begin{document}
This is a really tiny document,
isn't it?
\end{document}
```

Meaning
class-definition
preamble, commands which are valid through the whole document.
start of the actual document the document
end of the document

ATEX will generate the following: This is a really tiny document, isn't it?

Title and date

In order to automatically generate a title on the front page you need to place two commands in the preamble:

\title\{Report on Recent Advancements in X\}

\author\{Students Y and Z\}
Optionally, one can specify a date:
\date\{January 28th, 2021\}

Finally, place the following command direct after the beginning of your document.

```
maketitle
```

If you do not include a date, ${ }^{A} T_{E} \mathrm{EX}$ will use the date at which you generated the PDF-file.

Headings

Headings mark the start of a section or chapter.
The usual commands are:

- \section $\{\langle$ name $\rangle\}$

■ \subsection\{ \langle name $\rangle\}$
■ \subsubsection\{ $\{$ name $\rangle\}$
You might also encounter:

- \chapter $\{\langle$ name $\rangle\}$

■ $\backslash \operatorname{paragraph}\{\langle$ name $\rangle\}$

Table of contents

Using the mentioned (sub)* sections, you can generate a table of contents with one command:
\tableof contents

Near the end of the document, you might find:
\backslash appendix
The \appendix command marks the start of the appendices. All sections after this command are indicated in another style.

Paragraphs

Paragraphs

Of course you want to structure your text in paragraphs:

- for flat text just write everything successively;

■ paragraphs are made by including white-space or \backslash par.

If you really want something else

-
 forces a line cut;
- \bigbreak gives vertical white-space;
-
 enforces a new page;
-
 enforces a new page, but first places all tables and figures.

You should minimise the use of above commands in your text!

Accents

Standard pdf- $\mathrm{A} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ can only handle flat text and certain symbols. In order to use accents, the accent has to be written in front of the letter:

Signs

ó	ò	ö	ô	õ
\'o	\o	\"0	1~0	- 0

You will most likely need the above for names or words borrowed from another language.
"A naïve man was eating a crème brûlée during the El Niño."

Symbols

The following symbols all have a special meaning in $A T_{E} X$. In order to print them as text you will need a special command:

symbol	command
$\$$	$\backslash \$$
$\%$	$\backslash \%$
$\{$	$\backslash\{$
-	$\backslash-$

symbol	command
$\#$	$\backslash \#$
$\&$	$\backslash \&$
$\}$	$\backslash\}$
\backslash	\backslash textbackslash
,	,

Exercise 1

Look at the following code.

1 Who is the author?
2 What date will be used in the PDF?
3 Which entries would be in the table of contents?
4 Can you guess what the \% sign does?

```
\documentclass{article}
```

\documentclass{article}

```
\documentclass{article}
\title{Algebraic Geometry and Feynman Diagrams}
\title{Algebraic Geometry and Feynman Diagrams}
\title{Algebraic Geometry and Feynman Diagrams}
\author{Pepijn de Maat}
\author{Pepijn de Maat}
\author{Pepijn de Maat}
\begin{document}
\begin{document}
\begin{document}
\maketitle
\maketitle
\maketitle
% Maybe I should add a Table of Contents
% Maybe I should add a Table of Contents
% Maybe I should add a Table of Contents
\clearpage
\clearpage
\clearpage
\section{Introduction} %TODO
\section{Introduction} %TODO
\section{Introduction} %TODO
This subject is very important for TO DO reasons.
This subject is very important for TO DO reasons.
This subject is very important for TO DO reasons.
\paragraph{Physical Relevance}
\paragraph{Physical Relevance}
\paragraph{Physical Relevance}
TO DO, something with Cern.
TO DO, something with Cern.
TO DO, something with Cern.
\paragraph{Historical Interest}
\paragraph{Historical Interest}
\paragraph{Historical Interest}
TO DO, was there any?
TO DO, was there any?
TO DO, was there any?
\end{document}
```

\end{document}

```
\end{document}
```

 \(\square\)

Listings

${ }^{1} \mathrm{AT}_{\mathrm{E}} \mathrm{X}$ has three different listings:

- A plain list.

1. A numbered list.

Description A list with no predefined 'bulletpoints'
These listings are produced by the environments itemize, enumerate and description.

Example

Example

\begin\{itemize\} }
- Mathematics
- Theoretical Physics
- Experimental Physics
- Climate Physics
- Chemistry
\end\{itemize\} }

PDF output

- Mathematics
- Theoretical Physics
- Experimental Physics
- Climate Physics
- Chemistry

The enumerate environment has the same syntax.

Example

Description

Example

\begin\{description\} }
- Introduction
- Remarks on Previous Version
- Historical Relevance
- Preliminaries
- Felis catus
- Canis familiaris
\end\{description\} }
. .

PDF output

a Introduction
aa Remarks on Previous Version
ab Historical Relevance
b Preliminaries
Cats Felis catus
Dogs Canis familiaris

Packages

LATEX itself is only a basic framework, and for many things you need packages. We recommend the following:
babel The Babel package manages typographical rules such as line breaks for many different languages. The default language is 'US English'. (LualATEX: use Polyglossia instead.)
graphicx The Graphicx package vastly simplifies including images in your output.
geometry The Geometry package allows you to change the margins and size of your document.

You can import a package with ckage[optional]\{package\}.E.g.:\usepackage[English]\{babel\},\usepackage[margin=24mm]\{geometry\},\usepackage\{graphicx\}.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

Exercise 2 and a short break

Make exercise 2 on the exercise sheet:
Try to recreate the given page in $A T_{E X}$. It is an article document using the things you have learned above.

This is also a short break. It is no problem if you don't finish the exercise, but try to at least have a compiling document with a title.

Mathmode

So far we have worked in text mode.

Mathematical formulas and signs are made in math mode.

Text mode and math mode use separate commands, which will not work in the other.

Two types: inline and display math

Inline math mode:

Example

This sentence uses inline math like $a^{2}+b^{2}=c^{2}$ or $\oint_{C} B \cdot d \ell=\mu_{0} \sum_{i=\text { encl }} I_{i}$. This works well for small formulas.

Display math mode:

Example

Here we see display math, which is more fitting for large or important formulas.

$$
a^{2}+b^{2}=c^{2}, \quad \oint_{C} B \cdot d \ell=\mu_{0} \sum_{i=\mathrm{encl}} I_{i}
$$

Opening math mode

In order to open math mode, you need one of the following commands:
Inline math

-
(...
)
- \$... \$

Display math

■ $$
...
$$

- \$

The basics

The basic operations works as you might expect, e.g. $\$ 4+5-3 * 6 / 9=7 \$$ gives $4+5-3 * 6 / 9=7$.

For multiplication: use $\$ 2$ times $3 \$$ or $\$ 2 \backslash$ cdot $3 \$$ for 2×3 respectively $2 \cdot 3$.

Subscript and superscript

Relative placing (sub- and superscript):
The hat (${ }^{\wedge}$) and the dash ($)$.
■ One argument, surrounded by brackets $\{\ldots\}$.

- Or no brackets, then only the next character is taken into account.

Example

x_{n}	$\$ x _n \$$
$e^{t A}$	$\$ e^{\wedge}\{t A\} \$$
$3^{r} d$	$\$ 3^{\wedge} r d \$$

Common commands

Most mathematical symbols which are not on the keyboard are given by an abbreviation of their name (as it is pronounced).

Example (Vertical combinations)

\backslash frac $\{\langle$ num $\rangle\}\{\langle$ denom $\rangle\} \quad \frac{1}{137}$
$\$ \backslash$ frac $\{1\}\{137\} \$$
\backslash binom $\{\langle h i g h\rangle\}\{\langle$ low $\rangle\} \quad\binom{n}{p} \quad \$ \backslash$ binom $\{n\}\{p\} \$$
\backslash sqrt[power] $\{\langle$ number $\rangle\} \quad \sqrt[3]{512}$ \$ \backslash sqrt[3]\{512\}\$

Example (Sine, cosine, etc.)

$\backslash \sin \langle$ number \rangle	$\sin 60^{\circ}$	$\$ \backslash \sin 60^{\wedge} \backslash \operatorname{circ\$ }$
$\backslash \cos (\langle$ number $\rangle)$	$\cos (\pi / 3)$	$\$ \backslash \cos (\backslash \mathrm{pi} / 3) \$$
$\backslash \log \langle$ number \rangle	$\log 2 i$	$\$ \backslash \log 2 \mathrm{i} \$$

Greek

Example

$$
\frac{\hbar^{2} \nabla^{2}}{2 m} \psi(r)+\frac{1}{4 \pi \epsilon_{0} r} \psi(r)=E \psi(r)
$$

$\$ \$ \backslash$ frac $\left\{\backslash\right.$ hbar $^{\wedge} 2 \backslash$ nabla^2 $\}\{2 m\} \backslash p s i(r)+$
$\backslash f r a c\{1\}\{4 \backslash p i \backslash e p s i l o n=0 r\} \backslash p s i(r)=E \backslash p s i(r) \$ \$$

Greek characters:
Greek capitals:
Nicer Greek characters:
\backslash theta (θ).
\backslash Phi (Φ).
\varepsilon (ε).
N.B. Not all characters can be made nicer.

Different variants of a character: \backslash hbar (\hbar), \ell (ℓ).

Summations, integrals and products

Integrals, sums and product absorb the sub- and superscript when in display math:

Example

$\sum_{n=0}^{\infty} \int_{0}^{1} \frac{1}{n!} A^{n} t^{n} d t$

Symbols

IATEX has many, many mathematical symbols. You can find them here:
■ Complete list at CTAN:
http://www.ctan.org/tex-archive/info/symbols/comprehensive/.
■ Drawing a symbol yourself: https://detexify.kirelabs.org/

- Other problems:

■ http://duckduckgo.com/
■ http://www.google.com/
■ http://www.bing.com/
■ http://www.yahoo.com/
■ http://yandex.com/
■ https://search.creativecommons.org/
■ https://swisscows.com/

Brackets (left and right)

Pairs of vertical symbols can be enlarged automatically using \backslash left en \backslash right right in front of the symbol.

Example

Ugly:

$$
\left(\frac{1}{2}\right) \quad(\backslash \operatorname{frac}\{1\}\{2\})
$$

Beautiful:

$$
\left(\frac{1}{2}\right)
$$

$$
\backslash \operatorname{left}(\backslash \operatorname{frac}\{1\}\{2\} \backslash \text { right })
$$

Only a left bracket? Place a dot/period after \backslash right.
\backslash left $\backslash\left\{\ldots \backslash\right.$ right. $\rightarrow\left\{\frac{1}{\omega}\right.$

White space

White spacings are neglected in math mode. You can force white spacings using:

$\mathcal{A}_{\mathcal{M}} \mathcal{S}$ - $\mathrm{LT}_{\mathrm{T}} \mathrm{X}$

The American Mathematical Society provides a number of packages for working with mathemical formulae. This project includes the following packages:
amsmath The basis of most mathematical editing, used many times in these slides.
amssymb Additional symbols like \therefore, \beth and \mho, as well as the most important math fonts.
amsfonts Provides more additional font types. (Try also the packages eufrak and eucal).
amsthm Support for defining environments for definitions, theorems, exercises and so on.

Advanced math mode-environments

align Displays multiple vertically aligned numbered equations.
equation A 'better' version of
$\$ \$ \ldots \$$ which also adds a number at the end of the line.
No numbering: place a star $\left(^{*}\right)$ after the environment.
Example: \begin\{equation*\} ... \end\{equation*\}. }
You can add a row of text within the align environment using \intertext.

Advanced math mode-environments (example)

Example

$$
\begin{align*}
& a=b+c \tag{1}\\
& a+2 b=c \\
& 2 x+3=0 \\
& \text { Hence: } \\
& x=-\frac{3}{2} \\
& \text { \begin\{align\} } } \\
{\text { (2) } a+2 b \&=c} \\
{\text { \end\{align\} } } \\
{\text { \begin\{align*\} } } \\
{2 x+3 \&=0} \\
{\text { \intertext\{Hence:\} }} \\
{x \quad \&=-\backslash \text { frac }\{3\}\{2\}} \\
{\text { \end\{align*\} } }
\end{array}
\end{align*}
$$

Exercise 3

For the final exercise, reconstruct the following formulas in the document of Exercise 2.

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{a x^{2}} & =\sqrt{\frac{\pi}{a}} \\
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda g_{\mu \nu} & =\kappa T_{\mu \nu}
\end{aligned}
$$

(This formula uses the Lambda and the mu, nu and kappa from Greek.)
Your formulas might look slightly different since this presentation uses a non-standard math font.

Questions and closing remarks

The solutions for the exercises as well as a cheat-sheet can be found on the site or in this Team.

To learn more, e.g. about images, see an online manual. Examples:
■ Wikibooks: en.wikibooks.org/wiki/LaTeX
■ Overleaf Learn: overleaf.com/learn
If you have any questions you can reach us via mail; hektex@a-eskwadraat.nl.

Questions and closing remarks

The solutions for the exercises as well as a cheat-sheet can be found on the site or in this Team.

To learn more, e.g. about images, see an online manual. Examples:

- Wikibooks: en.wikibooks.org/wiki/LaTeX

■ Overleaf Learn: overleaf.com/learn
If you have any questions you can reach us via mail; hektex@a-eskwadraat.nl.
Are there any questions?

